2.3 Familiarize Yourself with the Data
Let’s take an initial look at the structure of our data object using str()
## 'data.frame': 204 obs. of 20 variables:
## $ id : int 1 2 3 4 5 6 7 8 9 10 ...
## $ verb1 : num 24.4 12.4 32.4 22.7 28.2 ...
## $ verb2 : num 27 14.4 33.5 28.4 37.8 ...
## $ verb4 : num 39.6 21.9 34.3 42.2 41.1 ...
## $ verb6 : num 55.6 37.8 50.2 44.7 71 ...
## $ perfo1 : num 19.8 5.9 27.6 33.2 27.6 ...
## $ perfo2 : num 23 13.4 45 29.7 44.4 ...
## $ perfo4 : num 43.9 18.3 47 46 65.5 ...
## $ perfo6 : num 44.2 40.4 77.7 61.7 64.2 ...
## $ info1 : num 31.3 13.8 35 24.8 25.3 ...
## $ comp1 : num 25.6 14.8 34.7 31.4 30.3 ...
## $ simu1 : num 22.93 7.58 28.05 8.21 15.98 ...
## $ voca1 : num 22.2 15.4 26.8 20.2 35.4 ...
## $ info6 : num 69.9 41.9 60.4 52.9 67.4 ...
## $ comp6 : num 44.4 44.9 50.3 42.7 86.7 ...
## $ simu6 : num 68 33.9 35.8 45.8 72.4 ...
## $ voca6 : num 51.2 37.7 55.5 36 60.4 ...
## $ momed : num 9.5 5.5 14 14 11.5 14 9.5 5.5 9.5 11.5 ...
## $ grad : int 0 0 1 1 0 1 0 0 0 0 ...
## $ constant: int 1 1 1 1 1 1 1 1 1 1 ...
From the output, we can also see that the data frame consists of 204 observations (rows) and 20 variables (columns). Each variable’s name and data type is also listed. Methods like the ones above can be an effective way to initially familiarize yourself with the main features of a dataset.