13.2 Data Preparation and Description
13.2.1 Loading libraries used in this script.
library(psych) #for basic functions
library(ggplot2) #for plotting
library(data.table) #for fast data management
library(nlme) #for mixed effects models
library(plyr) #for data management
library(see)
library(ggeffects)
For our examples, we use 4-occasion WISC data. Load the repeated measures data.
filepath <- "https://quantdev.ssri.psu.edu/sites/qdev/files/wisc3raw.csv"
wisc3raw <- read.csv(file=url(filepath),header=TRUE)
Subsetting to the variables of interest. Specifically, we include the id
variable; the repeated measures outcome variables verb1
, verb2
, verb4
, verb6
; and the predictors grad
and momed
variables.
varnames <- c("id","verb1","verb2","verb4","verb6","grad","momed")
wiscsub <- wisc3raw[ ,varnames]
describe(wiscsub)
## vars n mean sd median trimmed mad min max range skew
## id 1 204 102.50 59.03 102.50 102.50 75.61 1.00 204.00 203.00 0.00
## verb1 2 204 19.59 5.81 19.34 19.50 5.41 3.33 35.15 31.82 0.13
## verb2 3 204 25.42 6.11 25.98 25.40 6.57 5.95 39.85 33.90 -0.06
## verb4 4 204 32.61 7.32 32.82 32.42 7.18 12.60 52.84 40.24 0.23
## verb6 5 204 43.75 10.67 42.55 43.46 11.30 17.35 72.59 55.24 0.24
## grad 6 204 0.23 0.42 0.00 0.16 0.00 0.00 1.00 1.00 1.30
## momed 7 204 10.81 2.70 11.50 11.00 2.97 5.50 18.00 12.50 -0.36
## kurtosis se
## id -1.22 4.13
## verb1 -0.05 0.41
## verb2 -0.34 0.43
## verb4 -0.08 0.51
## verb6 -0.36 0.75
## grad -0.30 0.03
## momed 0.01 0.19
Multilevel modeling analyses typically require a tall (long) data set. So, we reshape from wide to tall:
verblong <- reshape(
data=wiscsub,
varying=c("verb1","verb2","verb4","verb6"),
timevar="grade",
idvar="id",
direction="long",
sep=""
)
verblong <- verblong[order(verblong$id,verblong$grade),c("id","grade","verb","grad","momed")]
head(verblong,12)
## id grade verb grad momed
## 1.1 1 1 24.42 0 9.5
## 1.2 1 2 26.98 0 9.5
## 1.4 1 4 39.61 0 9.5
## 1.6 1 6 55.64 0 9.5
## 2.1 2 1 12.44 0 5.5
## 2.2 2 2 14.38 0 5.5
## 2.4 2 4 21.92 0 5.5
## 2.6 2 6 37.81 0 5.5
## 3.1 3 1 32.43 1 14.0
## 3.2 3 2 33.51 1 14.0
## 3.4 3 4 34.30 1 14.0
## 3.6 3 6 50.18 1 14.0