10.3 Quasi-Poisson Regression Model
ferraro2016 <- read.csv("data/ferraro2016.csv")
ferraro2016$female <- as.factor(ferraro2016$female)
ferraro2016$obese <- as.factor(ferraro2016$obese)
ferraro2016$abuse_rare <- as.factor(ferraro2016$abuse_rare)
ferraro2016$abuse_freq1 <- as.factor(ferraro2016$abuse_freq1)
ferraro2016$abuse_freq2 <- as.factor(ferraro2016$abuse_freq2)
model4 <- glm(
formula = morbidityw1 ~ 1 + female + health + age + smoke_dose + heavydr2 + obese + fampos + friendpos + abuse_rare + abuse_freq1 + abuse_freq2,
family = quasipoisson(link=log),
data = ferraro2016,
na.action = na.exclude
)
summary(model4)##
## Call:
## glm(formula = morbidityw1 ~ 1 + female + health + age + smoke_dose +
## heavydr2 + obese + fampos + friendpos + abuse_rare + abuse_freq1 +
## abuse_freq2, family = quasipoisson(link = log), data = ferraro2016,
## na.action = na.exclude)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2792560 0.1439042 1.941 0.05241 .
## female1 0.3284639 0.0384021 8.553 < 2e-16 ***
## health 0.1665501 0.0419736 3.968 7.43e-05 ***
## age 0.0153301 0.0015396 9.957 < 2e-16 ***
## smoke_dose 0.0055588 0.0008907 6.241 5.02e-10 ***
## heavydr2 0.1136408 0.0440990 2.577 0.01002 *
## obese1 0.2639706 0.0394117 6.698 2.56e-11 ***
## fampos -0.0885551 0.0314942 -2.812 0.00496 **
## friendpos -0.0711315 0.0282620 -2.517 0.01190 *
## abuse_rare1 -0.0118142 0.0503028 -0.235 0.81433
## abuse_freq11 0.0903667 0.0557820 1.620 0.10535
## abuse_freq21 0.2731073 0.0519243 5.260 1.55e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasipoisson family taken to be 2.443076)
##
## Null deviance: 7403.7 on 2754 degrees of freedom
## Residual deviance: 6414.4 on 2743 degrees of freedom
## (267 observations deleted due to missingness)
## AIC: NA
##
## Number of Fisher Scoring iterations: 5
Remember, we can interpret these coefficients just as we would regression coefficients, however, we would be speaking in terms of the log of the mean count.