10.3 Single Predictor Model
10.3.1 Read in Data
We can read in the data and create a mean-centered version of income.
ferraro2016 <- read.csv("data/ferraro2016.csv")
ferraro2016$income_star <- as.numeric(scale(ferraro2016$catincome, scale = FALSE))
model4 <- glm(
formula = morbidityw1 ~ 1 + health + age + smoke_dose + heavydr2 + obese + fampos + friendpos ,
family = quasipoisson(link=log),
data = ferraro2016,
na.action = na.exclude
)
summary(model4)##
## Call:
## glm(formula = morbidityw1 ~ 1 + health + age + smoke_dose + heavydr2 +
## obese + fampos + friendpos, family = quasipoisson(link = log),
## data = ferraro2016, na.action = na.exclude)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5801319 0.1355025 4.281 1.92e-05 ***
## health 0.2219320 0.0425419 5.217 1.96e-07 ***
## age 0.0148076 0.0015510 9.547 < 2e-16 ***
## smoke_dose 0.0048612 0.0008919 5.451 5.46e-08 ***
## heavydr2 0.0743414 0.0444758 1.672 0.0947 .
## obese 0.2736708 0.0402436 6.800 1.27e-11 ***
## fampos -0.1310295 0.0316201 -4.144 3.52e-05 ***
## friendpos -0.0329860 0.0288534 -1.143 0.2530
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasipoisson family taken to be 2.560173)
##
## Null deviance: 7443.0 on 2769 degrees of freedom
## Residual deviance: 6739.7 on 2762 degrees of freedom
## (252 observations deleted due to missingness)
## AIC: NA
##
## Number of Fisher Scoring iterations: 5